A novel DNA repair assay to investigate the mode-of-action of genotoxic compounds

Giel Hendriks

DNA damage and DNA repair pathways

Intrinsic Damaging Agents (ROS, replication mistakes, replication stress, alkylating chemicals, & metabolically-derived aldehydes) Idle Damage **DNA** Damage **Base Lesion** Mismatch Mutagenesis Mutagenesis **Molecular** Effect Cellular Transformation Transformation Consequence Cancer Disease Cancer Immunodysfunction Outcome MMR BER Responsible **Repair Pathway**

Adapted from: Tiwari and Wilson, 2019

DNA Repair Pathway	Genetic Defects	Inheritable disease	Major Clinical Phenotypes
MMR	MSH2, MSH6, MLH1, PMS1, PMS2	Lynch syndrome	cancer predisposition
BER	MUTYH, NTHL1, UNG	Colorectal cancer, Hyper IgM syndroom	cancer predisposition, immunological defects
GG-NER	XPA, XPB, XPC, XPD, XPE, XPF, XPG, ERCC1	Xeroderma pigmentosum	cancer predisposition (particularly UV- induced skin melanoma), some instance neurological disease
TC-NER	CSA, CSB, XPB, XPD, XPF, XPG, ERCC1, TTD-A	Xeroderma pigmentosum, Cockayne syndrome	developmental defects, premature aging neurological abnormalities, no cancer predisposition
SSBR	APTX, TDP1, PNKP, XRCC1	Ataxia-oculomotor apraxia	neurological disease, no cancer predisposition
NHEJ	LIG4, XLF, Artemis, DNA-PKcs, XRCC4, ATM, MRE11, NBS1	SCID, Ataxia telangiectasia, Nijmegen breakage syndrome	cancer predisposition, immunodeficiency neurological disease
HR	BRCA1/2, RAD50, RAD51, PALB2, FANCA, FANCC, and FANCG	Breast/ovarian cancer, Fanconi's anemia	cancer predisposition, aplastic anemia

DNA repair and disease

- Panel of mammalian DNA repair-deficient cell lines
- Investigate the impact of DNA repair on the toxicity of genotoxic compounds
- Assess which DNA repair pathway repairs mutations caused by compounds

Cell line	Mutation	Species	DNA repair pathway	Reference
AA8	Wild type	Chinese hamster ovary		Thompson et al. (1982). Mutation Research 95: 427-440.
V79	Wild type	Hamster lung fibroblast		Zdzienicka et al. (1987). Mutation Research 178(2):235-244.
MEF	Wild type	Mouse embryonic fibroblast		Temviriyanukul et al. (2012). DNA repair 11(6):550-558.
IB10	Wild type	Mouse embryonic stem cells		Hendriks et al. (2014). Human Mutation 35(11):1382-1391.
EM9	Xrcc1	Chinese hamster ovary (AA8)	BER	Thompson et al. (1982). Mutation Research 95: 427-440.
UV20	Ercc1	Chinese hamster ovary (AA8)	NER	Yang et al. (1991). Mutagenesis 6(6):449-453.
UV5	Xpd	Chinese hamster ovary (AA8)	NER	Yang et al. (1991). Mutagenesis 6(6):449-453.
UV61	Csb	Chinese hamster ovary (AA8)	NER	Yang et al. (1991). Mutagenesis 6(6):449-453.
VC8	Brca2	Hamster lung fibroblast (V79)	HR	Zdzienicka et al. (1987). Mutation Research 178(2):235-244.
UV40	Fancg	Chinese hamster ovary (AA8)	HR	Busch et al. (1996). Mutation Research 363(3):209-22, Liu et al. (1997) PNAS 94: 9232-9237.
XR-V9B	Ku80	Hamster lung fibroblast (V79)	NHEJ	Pergola et al. (1993). Molecular and Cellular Biology 13(6):3464-3471.
XR-1	Xrcc4	Chinese hamster ovary (AA8)	NHEJ	Stamato et al. (1983). Somatic Cell Genetics, 9, 165-173.
Хрv	Pol eta (Xpv)	Mouse embryonic fibroblasts	TLS	Temviriyanukul et al. (2012). DNA repair 11(6):550-558.
Msh2	Msh2	Mouse embryonic stem cells	MMR	De Wind et al. (1995). Cell 82: 321-330.

DNA Repair-Profiler cell lines

- Predict genotoxicity of compounds
- Determine the mode-of-action of genotoxic substances
- Build evidence for adverse outcome pathways
- Characterization of novel medicines, e.g., oncology drugs
- Determine relevance of repair pathways
 - Sensitivity of specific tumors for chemotherapeutics

Applications of DNA Repair-Profiler

Assays

DNA repair

pathways

Cytotoxicity

Cell viability assays

Clonogenic survival assay

Overview of assays

DNA damage • (FPG-modified) Comet assay

Gene mutations

HPRT assay •

• Removal of small base damages that cause no/minor DNA helix distortion

Adapted from: Lee and Kang, 2019

Mutant	Origin
Wild type	Chinese hamster ovary
Xrcc1	Chinese hamster ovary

Removal of bulky, helix distorting DNA lesions

Adapted from: Lee and Kang, 2019

Nucleotide Excision Repair

Mutant	Origin
Wild type	Chinese hamster ovary
Xpd (NER)	Chinese hamster ovary
Csb (TC-NER)	Chinese hamster ovary

- BER specificially removes base damages and smaller DNA lesions
- NER specifically removes bulky adducts and helix-distorting lesions

Cell line	Mutant	Origin
AA8	Wild type	Chinese hamster ovary
UV5 (NER)	Xpd	Chinese hamster ovary
EM9 (BER)	Xrcc1	Chinese hamster ovary

Cytotoxicity of repair mutants is highly specific

- NHEJ and HR both repair DSBs
- NHEJ is cell cycle independent
- HR requires a sister chromatid
- HRis restricted to S-phase

DNA double strand break repair

DNA double strand break repair

Mutant	Origin
Wild type	Hamster lung fibroblast
Brca2 (HR)	Hamster lung fibroblast
Ku80 (NHEJ)	Hamster lung fibroblast

- MMR removes base-base mismatches and insertion/deletion mispairs generated during DNA replication
- Spontaneous or DNA damage-induced mismatches
- Repeated MMR cycles cause cytotoxicity

DNA Mismatch Repair

• Repair of mismatched at sites of DNA damage

DNA Mismatch Repair

DNA Mismatch Repair

line	Mutant	Origin
)	parent	Mouse embryonic stem cell
12-/-	MSH2	Mouse embryonic stem cell

- Important nitrosamines, formed DNA alkylation adducts, and their sources
- N-nitrosamines cause various DNA lesions that are substrate for different DNA repair pathways

Nitrosamines	Abbreviation	Major DNA Alkylation Adducts	Sources
N-nitrosodimethylamine	NDMA	N7-MeG, N3-MeA O ⁶ -MeG, O ² -MeT, O ⁴ -MeT	Food, drugs, tobacco smoke
N-nitrosodiethylamine	NDEA	N7-EtG, N3-EtA, O^6 -EtG, O^2 -EtT, O^4 -EtT	Food, drugs
N-nitrosopiperidine	NPIP	7-(2-oxopropyl)-N1,N ² -etheno-G, N ² -(3,4,5,6-tetrahydro-2H-pyran-2-yl)-2'-G	Food
N-nitrosopyrrolidine	NPYR	N7,8-ButanoG, N7-(4-Oxobutyl)-G, O ⁴ -(4-OH-Butyl)-T, and others	Food
N-nitrosodiethanolamine	NDELA	O ⁶ -OHEtG and others; glyoxal adducts	Cosmetics
N-nitroso-N-methyl-4-aminobutanoic acid	NMBA	unknown	Drugs
N-nitrosodiisopropylamine	NDIPA	unknown	Drugs
N-nitrosoethylisopropylamine	NEIPA	unknown	Drugs
N-nitrosomethylphenylamine	NMPA	unknown	Drugs
N-nitrosovarenicline	-	unknown	Drugs
N-nitrososalbutamol	/ /- /-	unknown	Drugs
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; (nicotine-derived nitrosamine ketone)	NNK	N7-MeG, N3-MeA, N3-MeG, O ⁶ -MeG, O ⁴ -MeG, O ⁶ -pobG	Tobacco smoke
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol; (nicotine-derived nitrosamine alcohol)	NNAL	N7-MeG, N3-MeA, N3-MeG, O ⁶ -MeG, O ⁴ -MeG, O ⁶ -pobG	Tobacco smoke
N'-nitrosonornicotine	NNN	O ⁶ -pobG	Tobacco smoke
N'-nitrosoanabasine	NAB	unknown	Tobacco smoke
N'-nitrosoanatabine	NAT	unknown	Tobacco smoke

DNA damage by N-nitrosamines

DNA repair-Profiler case study: Oxidative DNA damage

- KBrO3, oxidizing agent
 - Positive in AMES
 - Positive *in vitro* MN, and CA
 - Positive *in vivo* MN
- MMS, alkylating agent
 - Positive in AMES test
 - Positive *in vitro* MLA, MN, and CA
 - Positive *in vivo* MN, CA, comet, and UDS
- What is the mode-of-action?
- Build evidence for AOP

- Stem cell-based reporter assay
- Accurate detection of genotoxicity
- Detect induction of DNA damage, oxidative stress and protein damage
- Insight into mode of action of genotoxic compounds

- p53 tumor suppressor activation
- depletion, apoptosis

The ToxTracker assay

ToxTracker AO: DNA damage and oxidative stress

DNA damage Celular st Bscl2 Rtkn MMS

• MMS

25

- Oxidative stress
- Rtkn and Bscl2 activation
- Directly genotoxic?

• KBrO3

- Oxidative stress
- Rtkn activation
- Indirectly genotoxic?

• ToxTracker assay in presence of ROS scavengers N-acetyl cysteine and reduced glutathione

ToxTracker AO: DNA damage and oxidative stress

Cell line	Mutant	Origin
AA8	Wild type	Chinese hamster ovary
UV5 (NER)	Xpd	Chinese hamster ovary
EM9 (BER)	Xrcc1	Chinese hamster ovary

DNA damage induction by MMS and KBrO3

- MMS
 - Small, alkylating damage
 - BER

- BER
- Different types of lesions
- Also removed by NER

Cell line	Mutant	Origin
AA8	Wild type	Chinese hamster ovary
UV5 (NER)	Xpd	Chinese hamster ovary
EM9 (BER)	Xrcc1	Chinese hamster ovary

• Hprt gene mutation assay in DNA-deficient cell lines

Gene mutation induction by MMS and KBrO3

 Absence of DNA leads to an increases in gene mutations

Oxidate DNA lesions by KBrO3

- DNA Repair-Profiler consists of a panel of DNA repairdeficient mammalian cell lines
- These can successfully determine the genotoxicity of substances
- The DNA repair-deficient mutants can be applied to investigate the types of DNA damage that is induced by genotoxic substances
- The DNA repair-deficient cell lines can be used to investigate DNA damage and gene mutation induction

DNA Repair-Profiler

tox

S

The value of understanding

Thank you

Visit www.toxys.com or contact us at info@toxys.com

- Rodent carcinogen
- IARC group 2a: probable human carcinogen
- Positive Ames test
- Equivocal results for CA and MLA
- Positive UDS
- Positive *in vitro* comet
- Negative mutation data
- Mechanistic insight into genotoxicity
- Understand involvement of different DNA repair mechanisms
- Does DNA repair deficiency lead to hydrazine-induced mutagenesis?

DNA Repair-Profiler case study II: hydrazine

Table 2 Damage of nuclear DNA in primary cultures of rat lung cells exposed to test compounds

Treatment condition	Comet assay	
	Tail moment	
Solvent control	155 ± 53	
HZ 0.25 mM	190 ± 107	
HZ 0.5 mM	257 ± 100^{b}	
HZ 1.0 mM	312 ± 127^{b}	
HZ 2.0 mM	476 ± 179^{b}	
HZ 4.0 mM	643 ± 247^{b}	

Adapted from Robbiano et al., 2006

Case study: hydrazine

- No involvement of NER, BER, NHEJ, MMR
- Increased cytotoxicity in HRdeficient cells

Crosby et al., 2022

Case study: hydrazine

- NER- and HR-deficient cells have a higher spontanous mutant frequency
- No significant mutation induction after hydrazine exposure in NER-deficient cells
- HR deficiency does not significantly increase mutant frequency
- Hydrazine is genotoxic but not mutagenic in mammalian cells