

The reconstructed skin MN (RSMN) assay – next steps to improve use and aid implementation

Ashley Allemang, Senior Scientist Procter & Gamble Cincinnati, OH, USA



Central Product Safety Ensuring Safe Products

# **Overview**

- 1. RSMN Assay Development, Validation and Strategic Fit
- 2. Incorporation of Liver Metabolism
- 3. Automated RSMN Analysis



#### **RSMN Assay – Development, Validation and Strategic Fit**

#### **Regulatory change as driver for '2<sup>nd</sup> tier' in vitro assays**

- 7th Amendment to the EU Cosmetic Directive a testing and marketing ban of cosmetic ingredients tested *in vivo* came into force 2009, many followed
- Catalyst for *in-vitro-only* testing concepts
- However, the 'test battery' approach leads to a reduced specificity increase in fraction of 'misleading positives'
- Cosmetics Europe's animal-free strategy for genotoxicity testing
  - "3D skin model" project, included MN and Comet
  - More "in-vivo-like" behavior and enable route of exposure specific assessments



## **RSMN Assay – Development, Validation and Strategic Fit**

<u>nditor's</u>

Mutagenesis, 2021, 36, 1–17 doi:10.1093/mutage/geaa035 Original Manuscript Advance Access publication 5 February 2021

**Original Manuscript** 

Validation of the 3D reconstructed human skin micronucleus (RSMN) assay: an animal-free alternative for following-up positive results from standard *in vitro* genotoxicity assays

Stefan Pfuhler<sup>1,\*</sup>, Thomas R. Downs<sup>1</sup>, Nicola J. Hewitt<sup>2</sup>, Sebastian Hoffmann<sup>3</sup>, Greg C. Mun<sup>4</sup>, Gladys Ouedraogo<sup>5</sup>, Shambhu Roy<sup>6</sup>, Rodger D. Curren<sup>4</sup> and Marilyn J. Aardema<sup>7</sup>

<sup>1</sup>Procter & Gamble Co., 8700 Mason-Montgomery Road, Mason, OH 45040, USA, <sup>2</sup>Cosmetics Europe, Avenue Herrmann-Debroux 40 R-1160 Rrussels Relation <sup>3</sup>seb consulting + services Stembergring 15 33106 Paderborn

- Formal validation peer review ongoing
- OECD guideline development to follow

Table 3. Overall reproducibility within and between laboratories over time [within-laboratory reproducibility (WLR) and betweenlaboratory reproducibility (BLR)] in Phases 1 and 2a-2d

|     |          | Discordant | Concordant | Total | %    |
|-----|----------|------------|------------|-------|------|
| WLR | Lab A    | 6          | 17         | 23    | 73.9 |
|     | Lab B    | 3          | 21         | 24    | 87.5 |
|     | Lab C    | 1          | 6          | 7     | 85.7 |
|     | Lab D    | 1          | 14         | 15    | 93.3 |
|     | All labs | 11         | 58         | 69    | 84.1 |
| BLR |          | 5          | 17         | 22    | 77.3 |

Table 4. <u>Predictive capacity</u> of the RSMN calculated based on the evaluation criteria agreed on by the Steering Committee and other external experts

| Parameter       | Lab A | Lab B | Lab C | Lab D | Overall |
|-----------------|-------|-------|-------|-------|---------|
| Sensitivity (%) | 93.3  | 61.5  | 75.0  | 50.0  | 75.0    |
| Specificity (%) | 71.4  | 85.7  | 100   | 90.0  | 84.1    |
| Accuracy (%)    | 82.8  | 74.1  | 85.7  | 78.6  | 79.8    |

For a per lab view, also see Supplementary Table S1.



# **RSMN Assay – Development, Validation and Strategic Fit**

**Tiered approach** 



Overall Sensitivity of the skin assay battery (MN and comet) **increases from 75% to 89**% when endpoint-specific strategy is applied!



\*low priority for follow-up

# **Overview**

- 1. RSMN Assay Development, Validation and Strategic Fit
- 2. Incorporation of Liver Metabolism
- 3. Automated RSMN Analysis



- Reconstructed skin models known to reflect human skin specific metabolism
- RSMN assay demonstrated to detect compounds requiring metabolic activation
  - Improved with the 72-hour extended exposure (Aardema et al. 2013, Kidd et al. 2016)
  - However, in dermal exposure, there may be scenarios where substances penetrate the skin unchanged and undergo further metabolism in the liver

#### Evaluate the ability of rat liver S9 to complement the standard RSMN assay

\*Aardema et al. Evaluation of chemicals requiring metabolic activation in the EpiDerm<sup>™</sup> 3D human reconstructed skin micronucleus (RSMN) assay. Mut Res, 2013. \*Kidd et al. The 3D reconstructed skin micronucleus assay: considerations for optimal protocol design. Mutagenesis 2021



- Standard RSMN procedures (48 and 72-hour protocols)
- Evaluated two S9 exposure scenarios
  - 4 hour + 20-hour recovery
  - Low concentration continuous
- Cyclophosphamide (CP) model compound

| S9 Exposure      | Day 1* | Day 2             |                        | Day 3             |                        | Day 4  |
|------------------|--------|-------------------|------------------------|-------------------|------------------------|--------|
| No S9            |        | NMM +             | · Cyto B               | NMM +             | - Cyto B               | st     |
| Continuous S9    | Arriva | NMM + S9 + Cyto B |                        | NMM + S9 + Cyto B |                        | larves |
| 4h S9 + Recovery |        | NMM + S9<br>(4hr) | NMM + Cyto B<br>(20hr) | NMM + S9<br>(4hr) | NMM + Cyto B<br>(20hr) | Ţ      |

\*if using 72hr RSMN, 1<sup>st</sup> treatment occurs after at least 1hr equilibration



#### 4 Hour S9 Exposure + Recovery



#### **Continuous S9 Exposure**





- 4 hour 0.5% S9 had no impact on binucleation and dose dependent increases in MN detected after CP treatment (48 and 72-hour protocols)
- Continuous S9 exposure resulted in excessive toxicity upon treatment





#### **Next Steps**

- Continue to optimize the S9 concentration for the 4h S9 + recovery approach to maximize effect
- Validate the method with additional compounds requiring metabolic activation





#### **Next Steps**

- Continue to optimize the S9 concentration for the 4h S9 + recovery approach to maximize effect
- Validate the method with additional compounds requiring metabolic activation



# **Overview**

- 1. RSMN Assay Development, Validation and Strategic Fit
- 2. Incorporation of Liver Metabolism
- 3. Automated RSMN Analysis



- Challenges of the RSMN assay
  - Technical expertise
    - Laborious sample and slide preparation
    - Scoring time intensive and subjective
  - Limited statistical power
- Some success with automated slide scanning methods (Chapman et al. 2014)
- 3D skin not compatible with flow cytometric MN analysis (lysis based)

#### Compromise → Imaging flow cytometry

\*Chapman et al. Automation and validation of micronucleus detection in the 3D EpiDerm<sup>™</sup> human reconstructed skin assay and correlation with 2D dose responses. Mutagenesis, 2014.



- Evaluating micronuclei with imaging flow cytometry has been previously established for isolated blood and standard cell lines
- Translating the method to 3D skin is not straightforward...
  - Complex sample preparation (optimize existing methods)
  - Heterogenous cell population (retrain existing artificial intelligence (AI) analysis methods vs. create new)



- Evaluating micronuclei with imaging flow cytometry has been previously established for isolated blood and standard cell lines
- Translating the method to 3D skin is not straightforward...
  - Complex sample preparation (optimize existing methods)
  - Heterogenous cell population (retrain existing artificial intelligence (AI) analysis methods vs. create new)



- Evaluating micronuclei with imaging flow cytometry has been previously established for isolated blood and standard cell lines
- Translating the method to 3D skin is not straightforward...
  - Complex sample preparation (optimize existing methods)
  - Heterogenous cell population (retrain existing artificial intelligence (AI) analysis methods vs. create new)





assay using imaging flow cytometry and deep learning: A proof-ofprinciple investigation, Mutat Res Genet Toxicol Environ Mutagen



MN

mask

BF/

Hoechst

- Initial efforts with Cytek (formerly Luminex) have demonstrated feasibility of the approach using ImageStream
  - ↑ analysis speed 20 mins/sample
- Amnis® Artificial Intelligence (AAI) software





Figure 4. Allemang, et al. 2021. The 3D reconstructed skin micronucleus assay using imaging flow cytometry and deep learning: A proof-of-principle investigation, Mutat Res Genet Toxicol Environ Mutagen



- Challenges
  - Currently, not fully automated
    - AI correctly identified BN cells 90%
    - MN needed visual verification
  - Artificial intelligence methods dependent upon large number of training images ("truth" populations)
    - Cell number limited by tissue size
    - Low MN rates, even in positive controls

| f                         | f True positive MNBN cells |                     |                            |              |                    |            |                |  |  |
|---------------------------|----------------------------|---------------------|----------------------------|--------------|--------------------|------------|----------------|--|--|
| BF                        | Hoechst                    | MN<br>mask          | BF/<br>Hoechst             | BF           | Hoechst            | MN<br>mask | BF/<br>Hoechst |  |  |
|                           | 8                          | 8                   |                            |              | •                  | •          |                |  |  |
|                           | •                          | 8                   |                            | 0            | •                  | 2          |                |  |  |
| False positive MNBN cells |                            |                     |                            |              |                    |            |                |  |  |
|                           |                            | False               | positive                   | e MNBI       | N cells            |            |                |  |  |
| BF                        | Hoechst                    | False<br>MN<br>mask | DOSITIVE<br>BF/<br>Hoechst | e MNBI<br>BF | N Cells<br>Hoechst | MN<br>mask | BF/<br>Hoechst |  |  |
| BF                        | Hoechst                    | False               | positive<br>BF/<br>Hoechst | BF           | N Cells<br>Hoechst | MN<br>mask | BF/<br>Hoechst |  |  |



- New dataset generated with 4 additional compounds – analysis in progress!
  - Initial results using model based on TK6 cell images
  - Skin cell data will be added soon for further training of the AI model



RSMN (48h) Ethyl methanesulfonate



RSMN (48h) N-ethyl-N-nitrosourea



# Summary

- The 3D reconstructed skin micronucleus assay is a valuable "3R" friendly tool for follow-up of in vitro positive results
- Proof of concept studies demonstrate feasibility of incorporating S9 to evaluate systemic metabolism in the RSMN assay
  - Work ongoing to optimize concentration and further validate
- Automated analysis of the RSMN assay using imaging flow cytometry can improve throughput and statistical power
  - Additional data has been generated, refining AI model currently in progress

Increase the utility and support implementation of the RSMN assay into regulatory schemes



#### **Acknowledgements**

Procter & Gamble

- Stefan Pfuhler
- Emily Rottinger

#### Cytek Biosciences

- Matt Rodrigues
- Rob Thacker
- Richard DeMarco

# Thank you for your attention!



