GTA 2023

Use of Chicken egg assay as an animal alternative testing model to evaluate the genotoxic potential of Drugs and chemicals

Yax Thakkar

INTRODUCTION

A mutagen causes genetic mutations versus a clastogen which induces chromosomal/DNA strand breakages

Step wise approach to genotoxicity testing

The SCCS (Scientific Committee on Consumer safety) 7th amendment ban on animal testing has significant impact on the follow-up *in vivo* testing

5

In vitro models have some serious drawbacks

Need for more applicable animal alternative assays addressing misleading outcomes in the existing in vitro assays

Dermally Applied products

3DRSMN

Oral intake (Flavoring agent)

Lip products

HET-MN

Evaluation of the Chicken egg model to detect the genotoxic potential for Chemicals

Genotoxicity end-points measured COMET/NPL and Micronucleus

9

DNA strand break (Comet assay)/DNA adduct formation (NPL assay)

Selection of Materials for Pilot Study

- ► Criteria:
 - Materials α, β unsaturated aldehyde
 - Positive data on at least one of the traditional in vitro Ames and/or in vitro micronucleus assay
 - Has been followed up in vivo COMET and/or micronucleus study
- ▶ 4 Materials were identified which satisfy the above criteria

Study Design

CEGA COMET/NPL

HET-MN

FRAGRANCE MATERIALS

COMET ASSAY

³²P-NUCLEOTIDE POSTLABELING ASSAY

13

HET-MN methodology

Application day 8

Sampling day

Analysis

COMET assay results

NPL assay results 2-Phenyl-2-butenal

Vehicle, 20% HS 15

2-Phenyl-2-butenal, 5 mg/egg

Quinoline, 5 mg/egg

Nona-2-trans-6-cisdienal

Vehicle, 20% HS 15

Nona-2 trans-6-cis-dienal, 0.5 mg/egg

Quinoline, 5 mg/egg

p-Methoxy cinnamaldehyde

Positive

2-Methyl-2-pentenal

Vehicle, 20% HS 15 2-Methyl-

2-Methyl-2-pentenal, 8 mg/egg

Quinoline, 5 mg/egg

Vehicle, 20% HS 15

p-Methoxy cinnamaldehyde,

2.5 mg/egg

1

Quinoline, 5 mg/egg

MNT assay results

In-silco prediction

The *In ovo* model results from a pilot study conducted using fragrance materials showed promising concordance when compared to results from *in vivo* (animal) studies

Chemical Name	CAS #	Ames	In vitro MNT	In vivo COMET	In vivo MNT	CEGA COMET/NPL	HET-MN
				(
2-phenyl-2-butenal	4411-89-6	+		-	-	-	-
2-methyl-2-pentenal	623-36-9	-	+	-	-	-	-
Nona-2-trans-6-cis dienal	557-48-2		+		- /	<u> </u>	
p-methoxycinnamaldehyde	1963-36-6	+	+	-	-	+	-

Glutathione depletion Repeat using N-acetyl cysteine/NADPH

Negative

Enzyme activity studies

► CYP1A1 Phase-I ► CYP3A4 enzymes

► CYP2C9

Increase in CYP1A1 activity in a dose dependent manner when treated with Benzo-a-pyrene

Increase in CYP3A4 activity in a dose dependent manner when treated with Dexamethasone

Increase in CYP2C9 activity in a dose dependent manner when treated with Phenobarbital

Phase-II enzymes ^{• GSH}

Increase in GSH activity in a dose dependent manner when treated with Phenobarbital

Increase in UGT activity in a dose dependent manner when treated with Phenobarbital

Target Tissue Exposure study

Acridine Orange treatment to demonstrate target tissue exposure

Water treatment Liver tissue

Acridine orange treatment Liver tissue

Animal alternative Testing strategy

Acknowledgements

Tetyana Cheairs, New York Medical College Jiandong Duan, New York Medical College Anne Marie Api, RIFM INC. Thoughts/Suggestions/Questions?

