Genotoxicity Predictions for Rapid Compound Screening: A Case Study for Accurate Classification using ML

Seda Arat

Wen Sun, Maik Schuler, Matt Martin

Pfizer Drug Safety Research & Development

GTA 2023 Annual Meeting May 4, 2023





### Disclosure

The authors are employees of and have equity interests in Pfizer Inc. All research was funded by Pfizer.



### iScreen - a Comprehensive, High-Throughput Imaging Platform for Genotoxicity

- 96-well format
- 2 time points (24h and 4h)
- 22 doses of each compound
- 35 fields, 4 z-stacks
- >9000 cells analyzed/condition
- 6 different antibodies

| 10 Endpoints                             |
|------------------------------------------|
| <ul> <li>Micronucleus (MN)</li> </ul>    |
| • FISH                                   |
| <ul> <li>H2AXhigh</li> </ul>             |
| <ul> <li>H2AX spots</li> </ul>           |
| <ul> <li>Mitotic index</li> </ul>        |
| <ul> <li>H3 dephosphorylation</li> </ul> |
| <ul> <li>Cytotoxicity</li> </ul>         |
| <ul> <li>polyploidy</li> </ul>           |
| • PARP                                   |
| <ul> <li>cell cycle</li> </ul>           |





Sun, X. et. al (2022) A new imaging platform (iScreen) allows for the concurrent assessment of micronucleus induction and genotoxic mode of action in human A375 cells

#### How Does iScreen Output Look Like?

Clastogen (Etoposide)



### Decision Tree for Compound Classification based on Regulatory Recommendations





### How does Random Forest work?

- Estimating the # of Jelly Beans to the best of your ability
- "Wisdom of the Crowds"





https://iq.opengenus.org/random-decision-forest/

### **Tiered-Random Forest Modeling Approach**





### Classification 1: Nongenotoxic vs. Genotoxic Data





### In Model 1, FoldMN\*\* has higher predictive value to differentiate genotoxicants from non-genotoxicants



### **Classification 2: Clastogen vs. Aneugen Data**





# In Model 2, CENPA\*\* has higher predictive value to differentiate clastogens from aneugens



**Pfizer** 

### **Classification 3: Aurora Inhibitor vs. Tubulin Binder Data**





### In Model 3, MPM2 and H3 have higher predictive value to differentiate aurora inhibitors from tubulin binders



13

# Our Models Predicts Compounds with "mixed" MoA in the literature as genotoxic with mixed/inconclusive MoA

| Compound       | Non-genotoxic | Genotoxic | Clastogen | Aneugen | Aurora In | Tubulin Bi |
|----------------|---------------|-----------|-----------|---------|-----------|------------|
| Calyculin A    | 26%           | 74%       | 53%       | 47%     | 48%       | 52%        |
| Doxorubicin    | 0%            | 100%      | 59%       | 41%     | 38%       | 62%        |
| Trichostatin A | 0%            | 100%      | 59%       | 41%     | 81%       | 19%        |



### Conclusion

- iScreen a Comprehensive, High-Throughput Imaging Platform for Genotoxicity
- In this study, 1500+ compounds were used to generate a tiered-random forest modeling approach
- Our models have high predictive power, even on compounds with mixed MoA



We prospectively monitor our model predictions for genotoxicity risk assessment and regular updates (1600+ compounds)





### Supplementary Materials

#### How Does iScreen Output Look Like?

| antibody  | endpoint                  |
|-----------|---------------------------|
| FoldMN    | MicroNucleus by DNA stair |
| MN-CENPA  | No centromere region      |
| MN+CENPA  | centromere region         |
| MPM2      | mitotic proteins          |
| pH3       | phosphorylated histone H3 |
| H2AX      | double strand break       |
| MPM2pICHM | intensity of pH3          |

#### Clastogen (Etoposide)



**Pfizer** 

17



| antibody  | endpoint                  | note                                                                                                   |
|-----------|---------------------------|--------------------------------------------------------------------------------------------------------|
| FoldMN    | MN by DNA stain           | detects genotoxic compounds                                                                            |
| MN-CENPA  | No centromere region      | MN without CENPA contains fragment of chromosome, direct DNA damaging (clastogens)                     |
| MN+CENPA  | centromere region         | MN with CENPA contains full chromosome, compound affect mitotic apparatus, non-DNA damaging (aneugens) |
| MPM2      | mitotic proteins          | shows mitotic arrest by aneugens                                                                       |
| pH3       | phosphorylated histone H3 | shows mitotic arrest by aneugens, in addition dephosphorylation is a marker for aurora inhibitors      |
| H2AX      | double strand break       | H2AX high: cells had high level of damage;<br>H2AX foci: individual double strand break sites          |
| MPM2pICHM | intensity of pH3          | shows pH3 dephosphorylation progression, using actual intensity instead of thresholded cutoff          |

